
CSC 108H: Introduction to Computer
Programming

Summer 2011

Marek Janicki

August 4 2011

Administration

● Assignment updates.

● Brief exam information.

August 4 2011

Judging Programs.

● We can judge programs by correctness, and
whether they meet specifications.
● We use testing and proofs to do this.

● We can judge them by legibility.
● We have style guides to help us with this.

● Finally we can judge them by how fast they run.
● ?

August 4 2011

Judging speed.

● Obviously, we want our programs to run as fast
as possible.

● One way is just to time our programs.
● But there are a few things that make this not as

useful as it seems.
● Differing architectures.
● Moore's Law.
● Differing input sizes.

August 4 2011

Architectures.

● Code can often run much faster on one
machine than another.

● It can even run faster if it's written in certain
programming languages vs. others on the same
machine.

● So if we time our programs, how do we know
we're testing the quality of the algorithm, and
not just how well our program matches the
architecture?

August 4 2011

Moore's Law

● Says that processing power doubles every 18
months.
● Although that number is up for debate.
● Still the point is that computer speed increases fast.

● So if we compare times on different machines
we may just be testing the machines and not
the algorithms.

August 4 2011

Input Sizes.

● Moore's law means that the maximum
'reasonable' input size for our algorithm is
constantly increasing.

● But what if our program does well at small
inputs, but once it hits some threshold it
becomes much slower than other algorithms.
● For example, insertion sort is optimal for small (<7

or so) inputs.
● How can we be certain that our algorithm scales

well?

August 4 2011

Recap.

● We want a way of judging programs that is:
● Architecture independent.
● Captures how the program scales.
● Is independent of the speed of the computer we're

running our tests on.

August 4 2011

Computational Complexity

● What computational complexity is, very roughly,
is reading code and making a rough estimate of
how long it takes per input size.

● Each line of code that is executed is counted as
one step.
● So an arithmetic statement is considered to count

as much as a boolean expression which is as much
as a print statement.

● This is an oversimplification, but it is reasonable
due to Moore's law.

August 4 2011

Counting Steps:

● What about code that does a varying number of
steps?

● Like and if/elif block. Maybe one block of code
has a single statement, and the other has 20
statements.
● In this case we will use Worst-Case analysis, and

always assume that the longest block of code is
executed.

August 4 2011

Counting Steps:

● What about loops?
● Here we count the number of lines in the loop block,

times the number of times the loop is executed.
● Keep in mind that if we have nested loops, then to

get the total number of lines of code we execute, we
need to multiply the number of times the inner loop
runs time the number of times the outer loop runs.

● For while loops we need to consider the worst-case
scenario.

August 4 2011

Counting Steps:

● So if we've counted all the steps we get a rough
mathematical formula that tells us how many
steps the code takes to run.

● Because of Moore's law, we tend to ignore
constants, and just focus on the biggest term
that involves the input size.

● If we assume that the input size is n, then we
care only about the biggest term with n in it
(after we've removed the constants).

August 4 2011

Some general guidelines:

● Always take the worst case if your code
depends on boolean expressions.

● Constants aren't important.
● We'll see why this is formally in 165.
● But roughly, this has to do with the way functions

grow at large numbers.
– Which we justify using Moore's law.

● A for loop that depends on list or dictionary
length almost always adds a power of n.
● So a lot of basic complexity analysis is just counting

for loops.

August 4 2011

Breaks,

August 4 2011

Base 10 notation.

● Regular number notation is base 10.
● That is, we have 10 digits (0-9), and each digit

in a number tells us how many of a power of 10
we have.

● So we can write:
● 59 = 5 * 10**1 + 9 * 10**0
● 237896 = 2 * 10**5 + 3 * 10**4 + 7 * 10**3 +

 8 * 10**2 + 9 * 10**1 + 6 * 10**0

August 4 2011

What if we didn't have 10 digits?

● What if we only had 5 digits (0-4).
● Well we could still write 21 as 2 * 10**1 + 1 *

10**0.
● But if we want to write 27 in base 4? We can't

do anything in the form 2 * 10**1 + x * 20 ** 0,
because that will only get us number from 20 to
24. And if we change the first digit to 3 then the
lowest we can go is 20

August 4 2011

What if we didn't have 10 digits?

● So clearly we can't use 10 as our powers.
● But we say that when we had 10 digits, we used 10

as our base.
● So if we only have 5, then we should use 5 as our

base.

● So now when we write 21
5
 in a base 5 system

that means 2 * 5 ** 1 + 1 * 5 or 11 in our regular
base 10 system.

August 4 2011

Binary notation.

● Binary is just a base-2 system.
● So a number system when we only have two

characters (0-1).
● Used in computers due to hardware reasons (since

there are only two options, can represent them as
high and low voltages).

● So 1010110
2
 is 1 * 2**6 + 0 * 2**5 + 1 * 2**4 +

0 * 2**3 + 1 * 2**2 + 1 * 2**1 + 0 * 2**0.

August 4 2011

Some useful tricks.

● If we want to get only the lowest k bits of a base
j system from a number n, we do:
● n % j**k

● If we want to get only bits that are higher than
the lowest k bits in a base j system from a
number n, we do:
● n / j**k

● We can use these to clear out low or high order
bits, or to figure out what a specific bit is.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

